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The equations of potential triple waves in a barotropic gas with an arbitrary equation 
of state are obtained. The properties of the solutions for contiguous flows of the double- 
and triple-wave ty 

P 
e are investigated. The solutions of certain three- dimensional self- 

similar.problems o three pistons are solved in the case of a “heavy” gas with a high 
initial velocity of sound. These problems concern three planes forming an infinite tri- 
hedral angle within which the gas is at rest at the instant : - 0 , whereupon the pla- 
nes begin to retract from the gas at high constant velocities. 

1. A system of equations of ui le waves for a polytropic gas in the hodograph space 
I!. . of the velocities ur, u,, us was erived in [r] . Double waves in a barouopic gas for 

two-dimensional flows were considered in 1’1 (see also Suchkov, 
of differential constraints to gas d namics problems. Candidate’s 

of the Academy of Sciences U 6 SR, Novosibirsk). Some of the 
resuli of Ia] constitute minor generalizations of the results obtained in [at’] for a poly- 
tropic gas. 

The equations of potential unsteady third-rank waves [I] for a gas with the equation 
of state p = t (p) (p is the pressure, p is the density) can be derived exactly as for a 
polytropic gas. Proceeding as in I11 , we introduce as our unknown functions the en- 

thalpy 

and the “deployment” function 

Here ta are Cartesian coordinates and cp is the velocity potential. We obtain the 
following system of equations for these functions a and Tl : 
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Here a,, is the Kronecker delta. 
Once the functions ff and ll have been found, the flow in the physical space 

tl, z,, zsr t can be determined from the formulas 

‘1 = ug + A, + f (q + Hi), i = 1,2,3 0.3) 

Equations (1. Z), (1.3) were obtained under the assumption that uA, u, , u, are func- 
tionally independent. 

System (1.2) constitutes an overdetermined system of three equations for two unknown 
functions; the equation for J!I is independent. The second partial derivatives of the 
functions 61 and lI occur quadratically in all of the equations. After finding H we 
must choose a If which satisfies Eqs. (1.2) for i = 1,2. For FI =- l/s (uf + n,’ + 
+ us’) these equations are fulfilled automatically, and the equation for H describes 
self-similar flows which depend on the variables zr f t, f = 1.23. Sample nonself- 
similar flows of the triple-wave type are constructed in [6]. 

If uI, UI, UJ are functionally dependent and if the flow corresponds to the surface 
u1 - (I (ur, u,) in the hodograph space, then (as in [I] ) it is easy to obtain an already 

closed system of three equations for the functions Y, N and LT (second-rank waves) 
in the plane ur, us in the form 

4 P’) = RI,~,, - 2R,,‘4,2 + R,,Y,, = 0 11.4) 

Ls (HI = R,, (H,, + 1 + Ys*) - 2R1s (H,, + YIYY,) + R,, (H,, + 1 + Yy,‘)=O 

J% (W = R,, (f&s + 1 + Ys21 - 2R,, (L&s + Y,Yz) + R’, (L-L,, + f + Y,*) = 0 

where 

The flow in physical space can be reconstructed from the formulas 

n, + uf + yy, + (Ht f ut + yyi) t = zj + Z3YJ* i = I, 2 (1.5) 

This system of equations for a pol tropic as was first obtained in [a]. 
Let us consider the properties of ows wr fy *J! contiguous second- and third-rank waves, 

These will be found useful in the solution of specific problems. The case of contiguous 
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first-rank (simple) and second-rank waves was investigated in I’]. 

Property 1. If the surface us = Y (U r, u,) corresponds in physical space to the 
surface F (z,, x,, ts, t) = 0 along which some triple wave is contiguous to a three- 
dimensional double wave, then us = Y (u,, ut) is the characteristic surface for system 
(1.2). 

Let the initial conditions 

be given at the surface us = Y . 
Here HJ, and IT, are the generating derivatives. 
Replacing us in Eqs. (1.2) by the new independent variable X = us - Y (u,; I+), 

we can rewrite system (1.2) as 

AH,.~-!-G=o, AH hk+ BlfhA,C,=O BII,,+C,=O 

II 
@IT SH 

--, hh - ah4 HA,=87 (1.7) 

A=Ls(H)--(H+-Y)L,(Y), B=La(Il)-(H+-Y)&(Y) (t.8) 

Here the coefficients of H,, and IIAb vanish, and the coefficients C do not 
depend on Hji, II,,. The surface us = Y is characteristic only if A = B = 0 . 
The latter equations follow in this case from (1.4) by virtue of (1.8). Property 1 has 
been proved. 

Remark. In the case where a self-similar triple wave is contiguous to a two-dim- 
ensional double wave with Y = const the equation of the characteristic surface for 
the triple wave equation simpl coincides with the double-wave equation. 

Now let us consider the prob em of determining the shape of me contiguity surface Y 
in physical space in the case of self-similar flows. 

Let the function H (u,, u,) for a double self-similar wave (n = -t/s (uIs-f-usa) 
be known and let Y m 0 . 

Property 2. The shape of the contiguity surface F (F;,, Es, G) = 0, ci = q / L 
of the double- and triple-wave domains can be determined without solving triple-wave 
equation (1.2) for i = 3, as the required result can be obtained by solving a certain 
first-order partial differential equation. 

In fact, the contiguity surface in the space k, k, fs can be found in this case by 
eliminating t+, U, from the relations 

Let H (u,, u,) on the plane ua = 0 correspond to the double wave, so that Ht, H,, 

HI,, HIP, Hip as functions of ul, u, are known. The contiguity surface will be deter- 
mined once we know H, (uI, t+) - 10 (u,, u,). To find the function Q, from system 
(1.2) for i = 8 we set Ifa, = Qo,, MS1 - @, (8Q / du, I (0,) and recall the fact that 
the coefficient If= vanishes. This gives us the first-order partial differential equation 
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In specific problems the function 0, is usually known on some line ‘p (ui, n,) = 0, 
or from the conditions of contigui 

7 
with double waves, or from the conditions at mov- 

able walls [&I. Thus, by solving ( . 10) with the given initial conditions by ordinary 
methods (e.g. by reducing the problem to a system of ordinary differential equations 
for the characteristics) to find Q (IQ, I+), it is possible to find the shape of the conti- 
guity surface directly. 

Let us consider the special case of contiguity with a double wave of special form in 
a polytropic gas, 

c = a, + al4 + aI4 (i.il) 

(c. is the velocity of sound;&= const, a, = 0.5 (y - i),q = 0.5 (y - i)(f + y)%(3 - 
- ~)‘/a ; y is the adiabatic exponent). Such double waves were investigated in [VJ . 

They are important in the solution of several problems concerning the retraction of 

g 
lane pistons from a gas. Equation (1.10) can be simplified in this case. Replacing if 
y the function c (ul, u,, u2) (c2.,= dp / dp) , setting & / au, = r (u,uJ for U; = 0, 

and substituting variables according to the expressions 

E = a, + a+, + dtlrr, tl= - %ul + alu, 

we obtain the following equation for r : 

4- T-’ P+8 
(P- I)* 

(1.12) 

In the particular problem of escape into a vacuum along a dihedral angle (see I”]’ ) 
we have the condition 

r=ct,=T$ ( r + i 
(3 - 7) (2 - 7) > 

‘A = const for us=0 

Equation (1.12) is fulfilled (rE = I’,, = 0) for I’ E a, = con&. Replacing H by 
me function c (I(,, I+,, us) in (1.9), we obtain the following equation for the contigu- 
ity surface (in this case a plane): 

a8 + w& + adi2 - (al + af + 1142) & = 0 (1.13) 

2., It would be of interest to obtain the exact particular solutions of (1.2) appearing 
in 161 or to construct ap 
approximate solutions o P 

roximate solutions, of certain problems. We shall construct 
the equation for H (the self-similar case) and pictures of 

motion in physical space for the case of interaction of three-dimensional rarefaction 
waves in a “heavy” gas. 

Let a homo 
as the units o B 

enous gas with a high veloci of sound e (c 9 1 ; m/set can be taken 
measurement) be at rest insi 7 e an infinite tiihedral angle bounded by the 

planes P,, P,, P, ; let the dihedral angles between these planes be ai, z; r/,n, ala < 
iI,% asa 6 %n. At the instant t P 0 the planes P( (pistons) begin to retract from 
the gas with low (as compared with the velocity of sound in the unperturbed gas) const- 
ant velocities V,. The resulting self-similar flow depends on the variables Et m Z+ / I, 
f = 1, 2, 3. 

We note that the acoustic approximation is generally inadequate for this problem, 
since the gradients of the required quantities are lar e. 

Let us comider the class of flows in which strong f iscontinuities do not arise. Such 
flows are potential and consist of domaim of constant motion of simple, double, and 
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triple waves (the triple wave is described by Eq. (1.2) for j - 3). In [‘l@] we consid- 
ered two-dimensional problems on the retraction from a polytropic “heavy” gas of two 
pistons Ps, P, with the angle a between them at the low velocities V,, V, . We showed 
that the complete potential flow can be constructed only for a = n I k (k, is an integer). 

Let us replace fi by M = 
unknown function. s 

cF-rdp ( M = (2 I y - i)e in a polyuopic gas) as our 

The equation for M which follows from (1.2) for j = 3 can be reduced to the form 

i (&k - Mi"k) ) M,, + aM,.~p + &IP M,P + aMnMP + Mm 

1, ii-1 
Mm, + GM&f, + %IQ Mm + dfdfq -I- &Q I = o (2.0 

where 
m,n+k, m < n; PC Q f 4 P<q 

t 1% 1 i?‘M 
a=---., 2 f Ia * l3 =II f 1. 9 Mnp=a$ 

Relations (1.3) become 

SC = ui -!- I/PM, (2.2) 

Weak discontinuities begin to move with the velocity c c= 7/F into the ~~r~b~ 
gas from the planes Pr . Since the dimensions of the flow region in the space fr, a, &+ 
are of the order 0 (c), it follows from formulas (2.2) that the quantities Mt are boun- 
ded and that M, = 0 (i). Let us assume, moreover, that the inequality o<i is ful- 
filled throughout the flow region. This condition is fulfilled when c> i for ordinary 
equations of state, including that of a polytropic gas. 

The above assumptions enable us to neglect terms containing a and b(Q<f) as fac- 
tors in (2.1). The resulting approximate equation for M’admits of a solution of the 
form 

where d, are arbitrary constants. Let us use these solutions to construct flows in the 
three-piston problem. We shall also make use of linear relations between M and the 
components ui in the simple- and double-wave regions. Such relations are exact for 
simple waves (they are obtainable from the exact equations of hydrodynamics); in the 
case of double waves they are obtained in the same way as for a triple wave. It is easy 
to see that the conclusions of [‘I (the case of a heavy gas) are also valid for an arbina- 
ry equation of state; the solutions obtained in f*] in the hodograph plane for the funct- 
ion (2/y- 1) e are of the same form for the new unknown function M. Hence, in 
order to construct the complete flow without strong discontinuities we must assume that 
the dihedral angles aI,, a,,, ass are of the form 

all = n/4, %a = n/S, =,.,=nlk, (2.4) 

where k, > 2 are integers, This follows from the fact that planar flows far away from 
the vertex of the’trihedral angle formed b 

4l 
the moving pistons are adjacent to the rPes. 

But for an arbitrary trihedral angle whrc does not degenerate into a ray we have 

als + ala + au > n (2.5) 



This inequality and (2.4) imply that we need only consider the following possible 
combinations of the angles a,,, a,,, a, : 

( 
$8 -& ’ T 

) 
(k>2- is aninteger) 

( 
38 3~ $ 

> ( 
8 5 B +I z 8 

> 

( 

J-l It n 
ys J-D y 

> 

heaving aside the three exceptional cases, let us consider the principal possiblity 

(M, V,n, n I k). 
The equations of the angle faces at the initial instant can be specified in the form 

2s e 0, Ia = 0, tr = z, ctg (n / k) (2.6) 

In the hodograph space the flow domains correspond to the prism bounded by the 
planes 

u, = 0, IL, = 0, - - v, 
us = - v, - u:&& / k) 

- - u, ctg (n / k) 
+ :;sin(n,k) + V = 0 

(2.7) 

The top base of the prism (the plane u, = 0) is divided by straight lines into areas 
corresponding to the various planar double 

Fig. 1 

and simple waves as in 1.1. The triple-wave 

straight lines in the plane U, = 0. 

Fig. 2 

The flow is defined in physical space by formulas (2.2). For example, let us consi- 
der the motion of a polyeopic gas for the txihedral an 
Figure 1 shows (not in scale) the flow region in the ho $ 

le (‘/,n, V,n, %n)(k= 3). 
ograph space when the pistons 

P, retract with equal velocities V. The plane AOO,A, is a plane of symmetry in this 
case; it can be regarded as a stationary wall. 

Figure 2 shows (not in scale) the part of the flow re 
bounded by the pistons PI, P, and the stationary wal B 

ion in physical space which is 

denoted by the letters T, (1 = 
(the bisector plane). The regions 

1.2) correspond to the triple-wave regions; Dj (i = 1, 
2, 3, 4) to the double-wave regions; TI,, (k = 1.2,3,4) to the simple-wave regions; 
Cl (1 = 1.2) to the constant flow regions. 
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Table 1. 

Space 

Cl. E9 EI 1 

Space 

Ur, ur, w Solution in the hodograph space 

Prisms 

BCDOOIDIC,BI M = UI + 1/3’u, + ua + M. 

ABCCIBIA, I M=‘fa v/5u,+u,+M,-V 

Planes 

BCClBl 

BIG WI 

ACClAl 

Al&Cl 

Straight lines 

cc1 

AA1 

AC1 

Point9 

M=us+‘/a J6up+ MO-V, ul=- V3(u1+v) 

M=uI+ Vfu,+M,--V, u,=--V 

M=s/q Jk++u,+ MO-V, uI= Jf3ul 

M=‘/rJ’&s+Mo-2V, up-V 

u1=-1/4v, IA*=- ‘/, r/ii V, ur=M-MMo+2V 

IQ=-v lb,=- r/s v 

ul=l,,(hi- Mo+2V), 

9 ua=M-Mo+3V 

ur=~/,~~/5(b-Mo+2V) 
us=-v 

u,=--/~(M-M~+~V), u,=‘/&i(M-M~o+2V) 
us=-v 

I Al I u1=-v, 4=- vj v, ~a=-V, M= Mo-4V 

Cl u1=--l/IV, u,=- ‘/a IQV, ~a=--V, M=Mo-_3V 

The above letters are placed at one of the faces of the corresponding region. Table 1 
contains the solution in the hodograph space for the function M = 2c/ (y - 1); here 
M, is the value of M;in the unperturbed gas. Formulas (2.2) in this case become 

E,=uc+%(y--i)MMt 

The triple wave TI in the space El, &, b is bounded by the planes 

% (Y - 1) (El + m, + MB) - (Py - i j b = 0 
h + ‘fd% + v + (V - i) (‘& - ‘/a r/F!& - b - MO + ‘/,v, = 0 

‘A (Y - 1)(&l + & + MI) - yt, = 0 

7-l 
2(b + ms+M,)-(27-l)t,+q%=o 

fj- fiti= 0 (stationary wall) 
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The triple wave Ts is bounded by the planes 

%.rnY - f) E¶ - l/r (y + f ) L + v* (y - f MM0 - fl = 0 

I/* (7y - I) &r + V,r/T(y + i) & - (y - WE, + MO) + Ys (3Y - f)V = 0 

‘1. (7Y - i) El-” l/,vs (y + 1) &, -I- (y - i)(&, + MO - v) = 0 

v*o-iy - i) E, - l/r (y + i) r& + l/r (y - iw, - 1oM9 = 0 
El - - V (piston) 

All of the side faces of the regions in the lower half of Fig. 2 are orrhogonal to the 
piston E, = - V, 
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The temperature and density fields associated with the motion of an ideal gas acted on 
by an expanding piston have singularities at the 
nonallowance for heat conduction by the gas, R. 

iston surface 1’“). These arise through 
w ich plays the determining role near the 

surface of the piston. 
We shall solve the problem of motion of a heat-conducting 

din heat-insulated piston by the method of interior and exter or expansions. To this 
(B 

“i 
as acted on by an expan- 

en we constzuct the principal term of the interior asymptotic expansion b splicing it 
with the solution for an ideal gas which constitutes the principal term of tl! e exterior 


