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The equations of potential wriple waves in a barotropic gas with an arbiwrary equation

of state are obtained. The properties of the solutions for contiguous flows of the double-
and wiple-wave type are investigated. The solutions of certain three- dimensional self-
similar-problems of three pistons are solved in the case of a "heavy" gas with a high
initial velocity of sound, These problems concern three planes forming an infinite tri-
hedral angle within which the gas is at rest at the instant ¢=0 , whereupon the pla-
nes begin to retract from the gas at high constant velocities.

1. A system of equations of triple waves for a polytropic gas in the hodograph space
of the velocities uy, u,, uy was derived in [1] . Double waves in a barotropic gas for
nonsteady gotential two-dimensional flows were considered in [*] (see also Suchkov,
Applying the method of differential constraints to gas dynamics problems, Candidate'’s
thesis, Siberian Branch of the Academy of Sciences USSR, Novosibirsk), Some of the
results of [3] constitute minor generalizations of the results obtained in [*4] for a poly-
tropic gas.

The %,quations of potential unsteady third-rank waves [!] for a gas with the equation
of state p = f(p) (p Iis the pressure, p is the density) can be derived exactly as for a
polytropic gas. Proceeding as in [*], we introduce as our unknown functions the en-~

thalpy

H (uy, us, u3) = S %}-’-
and the "deployment” function
3
IT (uy, us, us) = 2 2pty— 9 — tH — : -;- L (us® + ug? +'us’) (1.1)

A==}

Here z, are Cartesian coordinates and ¢ is the velocity potential. We obtain the
following system of equations for these functions & and II :
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Here &y, is the Kronecker delta.
Once the functions & and 11 have been found, the flow in the physical space
z,, 7y, 23, ¢ can be determined from the formulas

2= uy + I, + ¢ (ug + H)), 1=123 (1.3)

Equations (1.2), (1. 3) were obtained under the assumption that u;, &y, uy are func-

tionally independent,
System (1,2) constitutes an overdetermined system of three equations for two unknown

functions; the equation for H is independent. The second partial derivatives of the
functions H and II occur quadratically in all of the equations. After finding H we
must choose a II which satsfies Egs, (1.2) for j= 1,2, For I1 =— 1/, (u,* + u,*
+ u,%) these equations are fulfilled automatically, and the equation for H describes
self-similar flows which depend on the variables =z, /¢, {==123 Sample nonself-
similar flows of the miple-wave type are constructed in [8).

If u,,u,, u3 are functionally dependent and if the flow corresponds to the surface
us =1 (u,, u,) in the hodograph space, then (as in [!]) it is easy to obtain an already
closed system of three equations for the functions ¥, ¥ and I (second-rank waves)
in the plane u,, u, in the form

Ly (¥) = Ry ¥y — 2R;3¥yy + Ry ¥y = 0 (1.4)
Ly (H) = Ry (Hyy + 1 + ¥?) — 2Ry (Hyy + ¥\ ¥,) + Ry (Hy + 1 4 ¥,0)=0
Ly() = Ry (Mg + 1 + W) — 2R, (I + ¥\ W) + Ry (T, +1+ V) =0

where

1 i av

Ry = 8ix + ¥1¥'y — T H‘Hk, w‘k=5;;3a—k' ‘Yi=~a-“-‘-‘-

The flow in physical space can be reconstructed from the formulas
Hi"f‘ u;-i- \Y‘l’!'f—(}f‘-f- u‘"}" ‘?q’i)£= $i+ 1‘3?1, t=1,2 (1.5)

This system of equations for a pot}lytropic LEas was first obtained in [¢).
Let us consider the properties of flows with contiguous second- and third-rank waves,
These will be found useful in the solution of specific problems. The case of contiguous
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first-rank (simple) and second-rank waves was investigated in [?].

Property 1, If the surface uy = ¥ (u,, u,) corresponds in physical space to the
surface F (z,, z,, 15, t) = 0 along which some wiple wave is contiguous to a three-

dimensional double wave, then uy = ¥ (u,, ;) is the characteristic surface for system
(1.2),
Let the initial conditions

H=H(uj,uw), Hy=Hg(u,u), T=1(u,u), I,=1I1,(,,uy) (1.6

be given at the surface uy = V¥ .

Here H, and II, are the generating derivatives.

Replacing u, in Egs. (1.2) by the new independent variable A = uy — ¥ (u,, uy),
we can rewrite system (1, 2) as

AH,, +C1=0, AH ,, + BIl[,,+Cy=0 BI,, £Cs=0
ol __H
Mp=7m* =g

A=Ly(H)—(H,— ¥) L1 (¥), B=La()—(H,—¥)L(¥) (1.8)

(1.7

Here the coefficients of H,, and I,, vanish, and the coefficients ¢ do not
depend on H,,, II,,. Thesurface uy = ¥ is characteristiconly if 4 =8B =0,
The latter equations follow in this case from (1.4) by virtue of (1.8). Property 1 has
been proved,

Remark, In the case where a self-similar wiple wave is contiguous to a two-dim-
ensional double wave with ¥ = const the equation of the characteristic surface for
the wiple wave equation simpli' coincides with the double-wave equation.

Now let us consider the problem of determining the shape of the contiguity surface
in physical space in the case of self-similar flows.

Let the function H (4, u,) for a double self-similar wave (I1 == —/, (u,"+u,?)
be known and let ¥ =0.

Property 2. The shape of the contiguity surface F (§. &, &) =0, § =211
of the double- and triple-wave domains can be determined without solving triple-wave
equation (1.2) for J = 3, as the required result can be obtained by solving a certain
first-order partial differential equation.

In fact, the contiguity surface in the space &, &, s can be found in this case by
eliminating u,, uy from the relations

b=+ Hy (g, u), §=1,2; &g = Hy(uy, ty) (1.9)

Let H (uy, u,) on the plane u, = 0 correspond to the double wave, so that #y, H,,
Hy, Hyg, Hy as functions of u,, uy are known. The contiguity surface will be deter-
mined once we know Hy (uy, ug) = ® (u,, u,). To find the function ¢ from system
(1.2) for jwm 3 wesel Ny = ®,, Hy; = ®, (8D / du; w= @) and recall the fact that
the coefficient #,, vanishes. This gives us the first-order partial differential equation

(1.10)
H,? Hg? 02
(1 - _’7‘) D;? - (1 - l_') D2+ (7" — 1) (HuHas + Hu + Ha— Hi* + 1) +
2
Q03 4 T(”x”x-—HaHn—Ha) QD, +72,—(Haflu-—~11111u—-11,) QD, == 0
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In specific problems the function @ is usually known on some line @ (u,, uy) = 0,

or from the conditions of contiguity with double waves, or from the conditions at mov-
able walls [®]. Thus, by solving (1,10) with the given initial conditions by ordinary
methods (e.g. by reducing the problem to a system of ordinary differential equations
for the characteristics) to find @ (u,, u,), it is possible to find the shape of the conti-

guity surface directly.
Let us consider the special case of contiguity with a double wave of special form in
a polytropic gas,

e =0y + ayuy + aguy (1.11)

(¢. is the velocity of sound;a, = const, a, = 0.5 (y — 1),03 = 0.5 (y — 1)(1 + y)"%3 —
— ¥)™; y is the adiabatic exponent). Such double waves were investigated in [s,8].

They are important in the solution of several problems concerning the retraction of
glane pistons from a gas. Equation (1.10) can be simplified in this case. Replacing H
y the function ¢ (u,, uy, us) (c* = dp{ dp), setting dc/ duy = T (u,u,) for u; =0,

and substituting variables according to the expressions

§ = o + 04u; + Gty N = = Gguy + Gyl
we obtain the following equation for T :

T—2 3 g? B(r+1) T+1
ATt I M —d g T +e o [ 5= =0 (1.12)

In the particular problem of escape into a vacuum along a dihedral angle (see [*])
we have the condition

T—1 T+1 s
Fr=ay= ) ((3_7)(2_7)) =const for ug=0

Equation (1.12) is fulfilled (Fg =T, = 0) for T = a, = const. Replacing H by
the function ¢ (u,, uy, 4;) in(1.9), we obtain the following equation for the contigu-
ity surface (in this case a plane):

03 + 0,058, + 03058 — (@) + @, + ) §y =0 (1.13)

2., It would be of interest to obtain the exact particular solutions of (1,2) appearing
in Js] or to construct approximate solutions, of certain problems. We shall construct
approximate solutions of the equation for A (the self-similar case) and pictures of
motion in physical space for the case of interaction of three-dimensional rarefaction
waves in a "heavy" gas.

Leta homoFenous gas with a high veloci?' of sound ¢ {e >>1: m/sec can be taken
as the units of measurement) be at rest inside an infinite trihedral angle bounded by the
planes P,, Py, Py; let the dihedral angles between these planes be @,3 < /4%, @)y <
1a%, Gy < */p%. At the instant ¢ == 0 the planes Py (pistons) begin to retract from
the gas with low (as compared with the velocity of sound in the unperturbed gas) const-
ant velocities ¥;. The resulting self-similar flow depends on the variables Eg==x /1,
t=1,2,3.

We note that the acoustic approximation is generally inadequate for this problem,
since the gradients of the required quantities are large.

Let us consider the class of flows in which strong discontinuities do not arise. Such
flows are potential and consist of domains of constant motion of simple, double, and
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triple waves (the triple wave is described by Eq. (1.2) for j=3). In ["*] we consid-
ered two-dimensional problems on the retraction from a polytropic “"heavy” gas of two
pistons P,, P, with the angle a between them at the low velocities ¥, V, . We showed
that the complete potential flow can be constructed only for @ = s/ k (k-is an integer),
Let us replace # by M= Scp-ldp ( M ==(2])y— 1) ina polyuopic gas) as our
unknown function.
The equation for M which follows from (1.2) for j = 3 can be reduced to the form

s
Mupp+ MMy + 58mp  Mpp+ aMo My -+ bBpp
() —MM), mp =0 2.4)
'_él( W T M ong + MMy +50mg  Mug+ aMaMy + b8ng (
m, n=kk, m < n; peFt, p<gq
where { f'P 5 _L_ M
a=7 i = fh P = Junduy
Relations (1. 3) become
EB=u+ VIM, (2.2)

Weak discontinuities begin to move with the velocity e = }Vf* into the unperturbed
gas from the planes P, . Since the dimensions of the flow region in the space §;, &, &
are of the order O {(¢), it follows from formulas (2.2) that the quantities M, are boun-
ded and that M = O (1). Let us assume, moreover, that the inequality a<€{ is ful-
filled throughout the flow region. This condition is fulfilled when &2 1 for ordinary

equations of state, including that of a polytropic gas.
The above assumptions enable us to neglect terms containing a and b(b<€1) as fac-

tors in (2, 1). The resulting approximate equation for M admiss of a solution of the
form

M = dy+ dyuy + dyuy + daus (2.3}

where d; are arbitrary constants. lLet us use these solutions to construct flows in the
three-piston problem. We shall also make use of linear relations between M and the

components uq in the simple- and double-wave regions. Such relations are exact for
simple waves (they are obtainable from the exact equations of hydrodynamics); in the
case of double waves they are obtained in the same way as for a wiple wave, It is easy
to see that the conclusions of [*] (the case of a heavy gas) are also valid for an arbitra-

1y equation of state; the solutions obtained in {*] in the hodograph plane for the funct-
jon {2/y— 1) ¢ are of the same form for the new unknown function M. Hence, in
order to construct the complete flow without strong discontinuities we must assume that
the dihedral angles @y, 0y, @py  are of the form

Oy = % [ Ky, oy = 1t [ Ky, ey = 1 f by (2.4)
where k; > 2 are integers. This follows from the fact that planar flows far away from

the vertex of the ‘rihedral angle formed by the moving pistons are adjacent to the riks,
But for an arbimary trihedral angle which does not degenerate into a ray we have

Uyt Oyt O >n (2.5)
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This inequality and (2.4) imply that we need only consider the following possible
combinations of the angles Oy, Qys, Qay ¢
’ T) s

Leaving aside the three exceptional cases, let us consider the principal possiblity

(a7, Ha®, 1 [ k).
The equations of the angle faces at the initial instant can be specified in the form

o] 2
~——
—~
8ol ]
e n

a

xoon n
(%. 5 ’k‘) (k>2— is an integer) {5 »

n
3
x n n
55.9)

z, =0, z3 =0, x = x5 ctg (7 [ k) (2.6)

In the hodograph space the flow domains correspond to the prism bounded by the
planes

Ug = 00 Uy = Ov U = —"'V' Uy = — u“-"tg (“/k) (27)
uy = —V, — Uy cos(n/k)+ ugsin(x/k)+ V=20

The top base of the prism (the plane u, = 0) is divided by straight lines into areas
corresponding to the various planar double and simple waves as in [*]. The triple-wave
regions can be obtained by dividing the
prism into segments by planes parallel to
the axis u, and passing through the above

straight lines in the plane y, = Q.
5 4
1 ‘<"
s 14— &
‘” -y (4
[ #
| |
I
T/
AL
|7 s 1=s
//“I /. {/
//}—— ~—
4 =¥y
Fig. 1 Fig. 2

The flow is defined in physical space by formulas (2.2). For example, let us consi-
der the motion of a polytropic gas for the trihedral angle (Y%, Yy, Ysn) (k= 3).
Figure 1 shows (not in scale) the flow region in the hodograph space when the pistons
P; reuact with equal velocities V. The plane 400,4, is a plane of symmetry in this
case; it can be regarded as a stationary wall,

Figure 2 shows (not in scale) the part of the flow region in physical space which is
bounded by the pistons P, Py and the stationary wal%(the bisector plane). The regions
denoted by the letters Ty (i = {,2) correspond to the wiple-wave regions; Dj(f = 1,
2, 3, 4) to the double-wave regions; I, (k = 1.2,3,4) to the simple-wave regions;

C; (1 = 1,2) to the constant flow regions.
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Table 1.
Space ] Space
b K 5 |' Ui, U, Ue Solution in the hodograph space

Prisms
T, BCDOO\DLC\B:| M = uy + V3us + us + M,
T, ABCC1B, A, = V3u;+us+ My —V

Planes
D, BCC\B, M=uy+% V3u+ M-V, =—V3wm+")
Dy B1C1D10y M=u1+ V3us4+My—V, up=-—V
D, ACC1 Ay M=3V3utu+M—V, uy=V3 u
D, ABiCy M=%V3u+M—2V, uy==—V

Straight lines
m, cc u=—%V, uy=—1%V3V, uu=M—My+2V
n, A4 u=—V, uy=—V3V, ua=M—My+3V
M, | A4C u =1 (M — Mo+ 2V), uy=1) V3(M— M, +2V)
Uy = —
I, B\C, w=—1(M—My44V), "a=’/:V§(M—Mo+2V)
U — —

Points
C, Ay =V, “a=—‘V§ V, a=—~V, M=M,—4V
Cs C: w=—1V, uy=—1 V3V, w=—V, M=M—3V

The above letters are placed at one of the faces of the cormresponding region. Table 1
contains the solution in the hodograph space for the function M = 2¢/(y — 1); here
M, is the value of M:in the unperturbed gas. Formulas (2.2) in this case become

§=u+ Yy —1) MM,
The wiple wave T, in the space §,, §,, § is bounded by the planes
My =G+ V34 M) — vy — 1) & =0
gl + ‘I{VSE, +V+ (Y — 1) ('/lgl - l/‘Vg-En - at — M, + '/:V) =0
Yatv = )G+ &+ M) —vE =0
T—1 —_
=@+ Vet M) —er—nt+ 13v =0

Es— V30=0 (stationary wall)
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The wiple wave Ty is bounded by the planes

YBViw—Dh—Y+ D8+ —DM—V)=0
Yoy — DB+ Y3+ D — @ — G+ M)+ %@y —1)V =0
Yy =0~ %YV3g+ e+ -1+ M—V)=0

Y Vil — D Eh =Yy + D E+ Y (y— )My —2V) =0
8= —V (piston)

All of the side faces of the regions in the lower half of Fig. 2 are orthogonal to the
piston 3=~V
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The temperature and density fields associated with the motion of an ideal gas acted on

by an expanding piston have singularities at the piston surface [*™3]). These arise through
_ nonallowance for heat conduction by the gas, which plays the determining role near the
. surface of the piston.

We shall solve the problem of motion of a heat-conducting %as acted on by an expan-

dir(xig heat~insulated piston by the method of interior and exterior expansions. To this

end we comstruct the principal term of the interior asymptotic expansion by splicing it

with the solution for an ideal gas which constitutes the principal term of the exterior



